In vivo pink-beam imaging and fast alignment procedure for rat brain lesion microbeam radiation therapy
نویسندگان
چکیده
A fast 50 microm-accuracy alignment procedure has been developed for the radiosurgery of brain lesions in rats, using microbeam radiation therapy. In vivo imaging was performed using the pink beam (35-60 keV) produced by the ID17 wiggler at the ESRF opened at 120 mm and filtered. A graphical user interface has been developed in order to define the irradiation field size and to position the target with respect to the skull structures observed in X-ray images. The method proposed here allows tremendous time saving by skipping the swap from white beam to monochromatic beam and vice versa. To validate the concept, the somatosensory cortex or thalamus of GAERS rats were irradiated under several ports using this alignment procedure. The magnetic resonance images acquired after contrast agent injection showed that the irradiations were selectively performed in these two expected brain regions. Image-guided microbeam irradiations have therefore been realised for the first time ever, and, thanks to this new development, the ID17 biomedical beamline provides a major tool allowing brain radiosurgery trials on animal patients.
منابع مشابه
Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality
Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...
متن کاملA narrow microbeam is more effective for tumor growth suppression than a wide microbeam: an in vivo study using implanted human glioma cells
The tumoricidal mechanisms of microbeam radiation therapy, and the more recently proposed minibeam radiation therapy, for the treatment of brain tumors are as yet unclear. Moreover, from among the various parameters of beam geometry the impact of changing the beam width is unknown. In this study, suppression of tumor growth in human glioma cells implanted in mice was evaluated experimentally us...
متن کاملMonte Carlo simulation of dose distributions from a synchrotron-produced microplanar beam array using the EGS4 code system.
Microbeam therapy is established as a general concept for brain tumour treatment. A synchrotron based x-ray source was chosen for experimental research into microbeam therapy, and therefore new simulations were essential for investigating the therapy parameters with a proper description of the synchrotron radiation characteristics. To design therapy parameters for tumour treatments, the newly u...
متن کاملResponse of Rat Spinal Cord to Microbeam Irradiation
Introduction: Microbeam Radiation Therapy (MRT) research at both the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory and the European Synchrotron Radiation Facility (ESRF), Grenoble, France, has been primarily focused on the central nervous system (CNS). The aim of these research programs is to improve the treatment of neoplasms of the CNS. A standard and frequently u...
متن کاملPretreatment quality control of single isocenter half- beam treatment planning technique using an amorphous silicon electronic portal-imaging device (EPID)
Introduction: Electronic portal imaging devices (EPIDs) are fundamentally used for instantaneous verification of the patient set‐up, block shape, and leaf positions during radiation therapy. In radiotherapy, situations arise in which an inclined PTV must be treated mutually with adjacent nodal regions. This methodology is most widely used for matching tangential/lateral breas...
متن کامل